let
The energy balance gives:
$$
C \frac{dT}{dt} = P(t) + \frac{T_a - T}{R} + w(t)
$$
As we can control our heating power from control input u(t) = [0,1]
$$ P(t) = P_{max}u(t) $$
Assumed
$$ w(t) = 0 $$
This can be rewritten as:
$$
C \frac{dT}{dt} = P_{max}u(t) + \frac{T_a - T}{R} + w(t)
$$
$$
\frac{dT}{dt} = \frac{P_{max}u(t)}{C} + \frac{T_a - T}{RC} + \frac{w(t)}{C}
$$
$$
\frac{dT}{dt} = k\,u(t)-\frac{1}{\tau}(T - T_a) + \frac{w(t)}{C}
$$
With PI control